State space decomposition for non-autonomous dynamical systems
نویسندگان
چکیده
منابع مشابه
State Space Decomposition for Nonautonomous Dynamical Systems
Decomposition of state spaces into dynamically different components is helpful for the understanding of dynamical behaviors of complex systems. A Conley type decomposition theorem is proved for nonautonomous dynamical systems defined on a non-compact but separable state space. Namely, the state space can be decomposed into a chain recurrent part and a gradient-like part. This result applies to ...
متن کاملConstructing Attractors of Nonlinear Dynamical Systems by State Space Decomposition
In a previous work, we have shown how to generate attractor sets of affine hybrid systems using a method of state space decomposition. We show here how to adapt the method to polynomial dynamics systems by approximating them as switched affine systems. We show the practical interest of the method on standard examples of the literature. 1998 ACM Subject Classification I.2.8, Control theory
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولA flexible state space model for learning nonlinear dynamical systems
We consider a nonlinear state-space model with the state transition and observation functions expressed as basis function expansions. The coefficients in the basis function expansions are learned from data. Using a connection to Gaussian processes we also develop priors on the coefficients, for tuning the model flexibility and to prevent overfitting to data, akin to a Gaussian process state-spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
سال: 2011
ISSN: 0308-2105,1473-7124
DOI: 10.1017/s0308210510000661